Croof

q Bring trust into your projects

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

Audit

Security Assessment
4. September, 2021

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level
Capabilities

Scope of Work
Inheritance Graph
Verify Claims
CallGraph

Source Units in Scope
Critical issues

High issues

Medium issues

Low issues
Informational issues
Audit Comments
SWC Attacks

o N o o o O W

10
11
13
13
14
19
20
21
21
21
21
21
22
23

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending
to help our customers increase the quality of their code while reducing
the high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description
1.0 04. September 2021 + Layout project
+ Automated- /Manual-Security
Testing
« Summary

http://SolidProof.io

Network
Binance Smart Chain (BEP20)

Website
https://binahunter.com/

Telegram
https:/t.me/bina_hunter

Twitter
https://twitter.com/Binahunterbsc

Facebook
https://www.facebook.com/profile.ohp?id=100063933034439

Youtube
https:/Mww.youtube.com/channel/UCnvdgdHCziHb6juilRHNENQ

Reddit
https:/Mww.reddit.com/r/Binahunter/

Medium
https://medium.com/@binahunter

Discord
https://discord.gg/d5j24yn4De

https://binahunter.com/
https://t.me/bina_hunter
https://twitter.com/Binahunterbsc
https://www.facebook.com/profile.php?id=100063933034439
https://www.youtube.com/channel/UCnvdgdHCziHb6jui1RHNEnQ
https://www.reddit.com/r/Binahunter/
https://medium.com/@binahunter
https://discord.gg/d5j24yn4De

Description

Their goal is to build a Meta-universe ecology, so that tens of millions of
users can happily participate in the NFT and blockchain-based digital
world anytime, anywhere in the simplest and most creative way.
Binahunter is a Meta-universe ecosystem that combines the greatest
combination of games and Prey NFT collections.

In addition to immersively experiencing the fun of the game, players can
also get a lot of benefits.

Project Engagement

During the 03rd of September 2021, Binahunter Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
desigh and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

Contract Link

v1.0
TBA

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that

have informational

character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsina
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:
OpenZeppelin
- Address
Ownable
SafeMath
Context
IERC20Metadata
I[ERC20
Pancakeswap
IPancakeFactory
IPancakePair
IPancakeRouterOl]
IPancakeRouter02

Tested Contract Files
This audit covered the following files listed below with a SHA-T Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was
not within the scope of this review.

v1.0
File Name SHA-1 Hash
contracts/BinaHunter.sol fc7a6db3ede4471909f89031cc941aab3f7aa7b0

contracts/BinaHunterTokenGuard.sol f701950b96d61335af6b9125f6eb2ac75¢c768996

Metrics

Source Lines
v1.0

I source comment [single block I mixed
empty [todo blockEmpty

B
7

Risk Level
v1.0

= overall average

perceivedComplexity

7
compilerVersion 6 size
compilerFeatures numLogicContracts
inlineDocumentation numFiles

interfaceRisk

10

Capabilities

Components

Version Contracts Libraries Interfaces Abstract

1.0 2 2 6 4

Exposed Functions
This section lists functions that are explicitly declared public or payable.
Please note that getter methods for public stateVars are not included.

Version Public Payable
1.0 46 0]
Version External Internal Private Pure View
1.0 17 66 3 28 24
State Variables
Version Total Public
1.0 19 10
Capabilities
Has
Solidity Experim Can Uses Destroya
Version Versions ental Receive Assembl ble
observed Features Funds y Contract
s
'|O *kkKk
0.8.0 (0 asm
blocks)
Uses New/
. Transf Low- Delega Hash ECRec Create/
Version ers Level .
tecCall Functi over Create
ETH Calls
ons 2

11

1.0

Yes

12

Scope of Work

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

Correct implementation of Token standard
Deployer cannot mint any new tokens
Deployer cannot burn or lock user funds
Deployer cannot pause the contract
Overall checkup (Smart Contract Security)

AN WN =

Inheritance Graph
v1.0

BinaHunter

BinaHunterTokenGuard

IPancakeFactory IPancakeRouter IPancakePair TokenGuard

IERC20Metadata

13

Verify Claims
Correct implementation of Token standard

Tested Verified

Function Description Exist Tested Verified

provides information about the total

TotalSupply token supply

provides account balance of the

BalanceOf ,
owner's account

executes transfers of a specified
Transfer number of tokens to a specified
address

executes transfers of a specified
TransferFrom number of tokens from a specified
address

allow a spender to withdraw a set
Approve number of tokens from a specified
account

returns a set number of tokens from

Allowance
a spender to the owner

Optional implementations

Function Description Exist Tested Verified

Owner renounce ownership for

renounceOwnership
more trust

14

Deployer cannot mint any new tokens

Name Exist Tested Verified File

Deployer cannot
mint

Main

Comment Line: -

Max / Total Supply: 100.000.000

_mint(msg.sender, _initSupply);

//IPancakeRouter _router = IPancakeRouter(@xECC5428A66808FC40A464e5B3F4D265DF985E3E8); //for test
IPancakeRouter _router = IPancakeRouter(0x10ED43C718714eb63d5aA57B78B54704E256024E);

.createPair(address(this), _router.WETH());

// set the rest of the contract variables

. = address(_router);

_isExcludedFromFee[owneri()] = true;
. isExcludedFromFee[address(this)] = true;

function _mint(address account , uint256 amount) internal {
require(account != address(@), "ERC20: mint to the zero address");

_totalSupply = _totalSupply.add(amount);

_balances[account] = : balances[account].add(amount);

emit Transfer(address(@), account , amount);

15

Deployer cannot burn or lock user funds

Name Exist Tested Verified

Deployer cannot
lock

Deployer cannot
burn

Comments:

v1.0

When TokenGuard address is not Zero address
Deployer can
Set sender/receiver to blacklist
Set transactionLimit
When its higher than O following require statement is
active
Amount of transfer should be lower than limit
otherwise you are not allowed to transfer
When sender is pair address
Balance of recipient can only be lower than stayMaxBuyAmount
Default: 100.000 *10**18

16

Deployer cannot pause the contract

Name Exist Tested Verified

Deployer cannot
pause

17

Overall checkup (Smart Contract Security)

Tested | Verified

Legend

Attribute Symbol

Verfified / Checked

Partly Verified

Unverified / Not checked

Not available

18

CallGraph

Tyt
e
[R
Dot Comt -
Untehned Catrt

19

Source Units in Scope

v1.0

Type File
2€8Q @ contracts/BinaHunter.sol
72€8® contracts/BinaHunterTokenGuard.sol

s8Q® Totals

Legend
Attribute

Lines

NnLines

NSLOC

Comment Lines

Complexity Score

Logic Contracts Interfaces Lines nLines nSLOC Comment Lines Complex. Score Capabilities

4 6 834 706 305 382 245 -
4 344 332 123 174 5¢ %
8 6 1178 1038 428 556 299 &

Description
total lines of the source unit

normalized lines of the source unit (e.g. normalizes functions
spanning multiple lines)

normalized source lines of code (only source-code lines; no
comments, no blank lines)

lines containing single or block comments

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

20

Audit Results

AUDIT PASSED

Critical issues

- no critical issues found -

High issues

- no high issues found -

Medium issues

- no medium issues found -

Low issues

Issue File Type
#1 Binahu Contract doesn't
nter import npm packages

from source (like
OpenZeppelin etc.)

#2 Binahu Missing Zero Address
nter Validation (missing-
zero-check)

Informational issues

Issue File Type
H1 Binahu State variables that
nter could be declared
constant (constable-
states)

Line

512, 524

Line

464, 462,
463, 480,
481

Description

We recommend to import all
packages from npm directly
without flatten the contract.
Functions could be modified
or can be susceptible to
vulnerabilities

Check that the address is not
zero

Description

Add the “constant”
attributes to state variables
that never change.

21

Audit Comments

04. September 2021:
Deployer
can set dexTaxFees
When TokenGuard address is not Zero address
Deployer can
Set sender/receiver to blacklist
Set transactionLimit
When its higher than O following require statement is
active
Amount of transfer should be lower than limit
otherwise you are not allowed to transfer
When sender is pair address
Balance of recipient can only be lower than stayMaxBuyAmount
Default: 100.000 *10**18

22

SWC Attacks

ID

Q“”
ol

IU'I(I')‘U) IO\‘
‘a =

)
=

IS ‘Q
X

0
=

[6N ‘m
L
N

0
=

'—‘(I')‘U) IN‘Q‘
‘aé &

n
=

o ‘Q
X

0
=

wn |®0‘
2 ‘s

O
N

I(D‘

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded gas
amount

Hash Collisions
With Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With Block
Gas Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667. Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

23

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

[0))] N O‘U)
< TEE

[Ox} ‘O
4
N

‘m
=

IS ‘Q
N}

wn N o‘m
< YLk

N ‘(‘)
4
N

‘m
=

1— ‘O
—_—
N

‘m
=

lo ‘Q
N}

wn |(D(I')‘U7 |®‘Q‘m
2 "LE “[EE

N O
=

Arbitrary Jump
with Function
Type Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper Verification

of Cryptographic Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence
to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper Verification

of Cryptographic Signature

24

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [O ‘U)
‘E ‘: s

o ‘O
4

‘m
<

IS ‘Q

(V2] N O ‘U)
‘E ‘: s

IN ‘O
4

0
=

4
—
—

|mQ‘m |\1‘Q‘m |00‘Q‘m Im‘(p‘m IO‘Q‘U? ‘
‘55 s = sz s L=

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with Failed
Call

Delegatecall to
Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert Violation

Uninitialized
Storage Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284: Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

)
=

O
o

(p‘(ﬁ |U'1‘
3k

Q‘m u\‘
3=

O‘m |(N‘
s

(I')‘U) |N‘
sk

IO(I')‘U) '—“
‘5 =

Unprotected
Ether
Withdrawal

Unchecked Call

Return Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known VVulnerabilities

CWE-682: Incorrect Calculation

CWE-710: Improper Adherence
to Coding Standards

26

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Scope of Work
	Inheritance Graph
	Verify Claims
	CallGraph
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

